august 21, 1964 EWD96-0

unbedding complex arithmetic

The following is an effort to please ALGOL users, more than toc please
language designers. It is an anewer to the undeniable fact that those,
who should like to work extensively with complex numbers will find it
hard to use 4LGUL 60, and for two reasons: it is hard to express the
computing process, and after having done so, it becomes equally hard
for the computer.

Those who are crying for the inclusion of complex arithmetic will
therefore be helped greatly by any reasonable effort in this direction,
even if it has some deficiencies and lack of elegance. Those who do

net care, being happy with real numbers, should not protest on account
of the deficiencies as long as their non-complex programs are processed
as efficiently as before,

This,therefore, will be my guidir Sriciple: to introduce complex
numbers and complex arithmetic in such a way that, whenever a price

in efficiency has to be paid, this price will be paid in the program
using the complex numbers. (This with usual machines and implementation
techniques in mind.)

womplex variables

ith the character '"complex'", followed by an identifiertist, we can
declure « number of complex variables at the beginning of a block. &
complex variable will be represented by its real and imaginary part,
toth as reals, i.e. not e.q. in argument and modulus. {(This is of
arithmetic importance, because now the "resolving power" in the complex
plane has been coupled in a rigid way to that one on the real axis.)

Remurk. The complex variable will be declared with the single character
"gomplex'" and not by means of "complex real'., The reason is that I do
not intend to cater for "complex integer'.

Complex arrays

They will be declared by "complex array" and will consist of an array
of complex variables, just as 'real array" introduces one or more
arrays of real variable,

Complex procedures

They will be declared by '"complex procedure" analogous to the way in
which real procedures are declared by '"real procedure'. When used as
a function designator, they represent a complex primary.

The library will contain at least one complex procedure, for which
I propose the reservation of the identifier "com"

complex procedure com (u,v); value u,v; real U, v;

Its value will be the complex number with the values of u and v as
its real and imaginary parts respectively.

EWD96-1

Complex formal parameters

The specifications "complex", "complex array", "complex procedure"
are added. The library will contain at least two complex procedures
for which I propose to reserve the identifiers '"re' and "im'.

real procedure re(z); value z; complex z;

real procedure im(z); value 2z; complex z;

+hen used as a function designator they have the value of the real
and imaginary part, respectively, of the value of the actual
purciaeter. Due to the representation we can state for any complex
variable z

z = com(re{z}, im{z)).

#+ formal parameter specified "complex'", may occur in the value list.
i1f a formal parameter specified "complex array'" is alsc allowed in
the value list. I can hardly blame implementers if they do not cater
for it. (#We should bear in mind that the intention of this proposal
18 to provide something what is asked for.;

The more difficult decisions to take are concerned with

1. ~hat transfer functions to invoke automatically

<. The semantics of expression evaluation {control of types of
intermediate results)

3. whether the special character i should be introduced and if so,
how.

My intention is to see to it that the complexity of all intermediate
results is known. The restriction, that all complex expressions
should be homogeneously of type complex is tco strong, therefore I
suggest automatic invoking of the transfer of arithmetic (i.e.
integer or real) to complex.

1f "op" is one of the five binary operations 4!, "-n, ten u/n gn
"else',

if ¢ 1is an expression of type complex,
if ar is an expression of type arithmetic,

then the result will be of type complex, and "c op ar" will be
interpreted as 'c op com(ar,0)" and "ar op c¢" as "com{ar,0) op ¢,
assuming the five operations defined for complex arguments,

If ¢ is a complex variable, the assignment statement '"c:= ar' will
be interpreted as "c:= com(ar,0)}"

The net effect of this rule will be that all non-complex sub-
expressions will be evaluated in terms of integer and real arithmetic.
» program, not using the complex arithmetic at all will proceed

at full speed, as desired.

The definition of the powering operator will be extended to include
the case with complex base and integer exponent. The result will
then be of type complex.

The unary + and - signs in front of a complex primary will have
their usual meaning.

EWDQ6-2

I am inclined to restrict the automatic invoking of the transfer
function to the cases stated above. For one thing, I feel that
automatic invoking of the transfer function from complex to real
should never tuake place.

if "arv" stands for a real or integer variable
if "c" stands for a complex expression
the assignment
"arvi= c¢" will not be allowed and the translater can
already give an error message.
In that case the program should write

"arviz re(c)" or "arv:= mod(c)'", just as he wishes.

The next gquestion to decide is whether we admit an arithmetic
actual parameter if the formal one is specified as complex.
I think we should, although there are some dangers lurking!

e consider two procedures

o

H and

procedure p1{z}; complex z; begin {2z} en

o ¥

.
]

srocedure p2(z}; complex z; begin seea} ZT3IT L4... €I

the difference being, that inside p1 only interest is shown in
the right hand value of the formal parameter, whereas in P2 an
assignment is made to it{as well).

If we do not provide for automaticly invoking the transfer function,
the call "p1{com(z,0))" would be OK, the call "p2(com(z,0))}" would
have to be rejected at some stage or another. The implementation

of this rejection runs shortly as follows.

at call side the actual parameter is specified in its so-called
formal locations. Of these formal locations, one is reserved for

the evaluation of the right hand value and one for the left hand
value, a specification which is given in the form of an instruction,
which at run time will be the argument of an execute operation. At
call side the actual parameter "com{(z,0)" is recognized as one
without a left hand value. sus a result the calling seguence will
insert an alarmjump at the word reserved for the left hand value.

if we decide, that the transfer function from arithmetic to complex
should be involved automatically, then we can just write p1(x) and
p2(x).

In the case "p1(x)'" the system must provide for automatic transfer
from arithmetic to complex, in the case p2(x) the systam should give
an alarm. The requirement is, that we can devise a mechanism,
catering for this, without slowing down the work of the non-complex
user. 4 second requirement is that the calling sequence will be
independent of the procedure called.

we can achieve this by two stapge definition of the formal locations.
Un account of the specification "formal" the procedure starts to
inspect the formal locations. If the actual happens to be an
arithmetic variable it can change the formal location by replacing
the word, reserved for the left hand value by an alarm jump. In
this way the price is paid by the complex user.

E#D96-3

FFinally I have come to the conclusion that in a system like this
there is no room for i, or any other way of representing complex
constants. Instead of "u+iv" the user is kindly requested to write
com(u,v)., If he wishes to do so, he can declare "complex 1'";

and assigne "i:= com(0,1)" after which he can write '"u+isv",

liy dislike for i is that I do not know how to regard it. Is it a
unary operator, of which it has not been decided whether it works to
the left or to the right? ("usiv" and "u+vi'"). Or is it a constant,
not unlike true and false? If so, we should require the user to
wirite '"u+l+*v" or "u+vsi'', vut then the use of the multiplication
sign (and the plus sign, for that matter) is a sheer mistification,
and there is only a point in this. If the translator recognizes
these particular circomstances and is able to introduce a further
type, call it'"imaginary', at least for anonymous results. Then the
guestion may be raised "i* 1", this will equal -1; the real result
-1 or the complex one?

11l this mess i1s introduced at the moment one tries to include i.
inerefore I propose not to do it, hoping that every user, crying
for complex numbers, will be glad with the facilities provided,
instead of suffering from an absent i.

